1·The results show that the higher-order, fast multipole boundary element method can be applied to large problems with high numerical accuracy for engineering designs.
研究结果表明,高阶快速多极边界元法易于分析此类大规模问题,并具有很高的数值计算精度,满足工程设计的要求。
2·The elementary properties of the system combining a multipole len with a round len are studied.
研究了多极透镜与旋转对称透镜组合系统的基本性质。
3·The stress fields of such structure around the opening were predicted using a three-dimensional, higher-order fast multipole boundary element method.
为精确模拟该结构的应力状况,该文提出一种三维高阶快速多极边界元法。
4·Fast multipole method is used as a fast solver for BEM, making BEM applicable for large scale simulation of composites with a large number of randomly distributed particles.
快速多极算法作为边界元法的求解算法,从而使边界元法能够对含有大量随机分布颗粒的复合材料进行大规模模拟。
5·It USES the fast multipole method (FMM) to accelerate the solution of the integral equations.
它使用快速多极方法(FMM)加速积分方程的解决方案。