1·If it is finite and nonempty, then it must contain at least one idempotent.
如果它是有限和非空的,则它必须包含至少一个幂等元。
2·In chapter two, we prove a nonempty intersection theorem in L-convex space by using a continuous selection theorem. As applications, some minimax inequalities are obtained.
在第二章中,我们运用一个连续选择定理证明了L -凸空间中的一个非空交定理。作为应用,我们得到了一些极大极小不等式。
3·Fuzzy evidence (D-S) theory is based on nonempty sets.
模糊证据(D - S)理论基于非空集合。
4·The boundary of a contains a nonempty open set.
的边界包含一个非空开集。
5·As application of generalized L-KKM type theorems, a nonempty intersection theorem is proved.
作为广义l - KK M型定理应用,证明了非空交定理。